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Abstract. In this paper, we find q-differential equations for polyno-
mials that appear by combining trigonometric functions with Genoc-
chi polynomials. Since Genocchi polynomials (QSG and QCG) come
in two forms, we can identify interesting differential equations for the
variables x and y.
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1. Introduction

This section briefly outlines the essential definitions and theorems re-

quired for understanding this study. For q ∈ R − {1}, the q-number is

defined as:

[n]q =
1− qn

1− q
.

In the definition of the q-number, it noted that limq→1[n]q = n, see

[2], [3], [9]. Moreover, for k ∈ Z, [k]q is referred to as a q-integer.

The q-numbers introduced by Jackson [3] have led to expanded the-

ories that intersect with established fields, see, [1], [2], [8], [9]. The q-

Gaussian binomial coefficients ([4]) are defined as[
m
r

]
q

=
[m]q!

[m− r]q![r]q!
,



2 J.Y. Kang

Here, m and r denote non-negative integers.

Note that [n]q! = [n]q[n− 1]q · · · [2]q[1]q and [0]q! = 1.

Definition 1.1. Let x be any complex numbers with |x| < 1. Then, two

forms of q-exponential functions ([1], [2]) can be expressed as

eq(x) =

∞∑
n=0

xn

[n]q!
, Eq(x),

=

∞∑
n=0

q(n
2) xn

[n]q!
.

It is noted that limq→1 eq(x) = ex and eq(x)Eq(−x) = 1.

Definition 1.2. The q-derivative of a function f with respect to x is defined

by

Dqf(x) =
f(x)− f(qx)

(1− q)x
, for x 6= 0,

and Dqf(0) = f ′(0), see, [7], [9].

We can prove that f is differentiable at zero, and it is clear that

Dqx
n = [n]qx

n−1. Because the polynomials covered in this study deal with

multiple variables, we use the derivative with respect to x, y, and t, which

are expressed as Dq,x, Dq,y, and Dq,t, respectively.

Definition 1.3. The generating function for the q-Genocchi numbers and

polynomials ([5], [6]) are

∞∑
n=0

Gn,q
tn

[n]q!
=

2t

eq(t) + 1
,

∞∑
n=0

Gn,q(x)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx), respectively.

For q → 1 in Definition 1.3., we can find the Genocchi numbers Gn

and polynomials Gn(x).
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In [5], the authors introduced new Genocchi polynomials (sine Genoc-

chi polynomials and cosine Genocchi polynomials) by replacing x with com-

plex numbers and studied several properties thereof.

Furthemore, [6] combines the polynomials discussed in [5] with q-

numbers to construct an Genocchi polynomial that incorporates q-trigono-

metric functions. The study also reveals associated properties and sym-

metrical structures. Specifically, the authors pinpoint approximate roots

that fluctuate based on the value of q and present a visual representation

of these roots.

Definition 1.4. The generating function for the q-SINE Genocchi (QSG)

and q-COSINE Genocchi (QCG) polynomials are

∞∑
n=0

Gn,q(x, y)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx)SINq(ty),

∞∑
n=0

Gn,q(x, y)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx)COSq(ty),

respectively, see [5].

Theorem 1.5 [7]. Let k be a non-negative integer. Then, the following

relations can be formulated:

(i) Sn−k ,q(x , y) =
[n − k ]q !

[n]q !
D (k)

q,x Sn,q(x , y).

(ii) Cn−k ,q(x , y) =
[n − k ]q !

[n]q !
D (k)

q,x Cn,q(x , y).

Theorem 1.6 [7]. Let k be a non-negative integer. Then, the following is

valid:

(i) D (k)
q,ySn,q(x , y) =


(−1)

k
2

[n]q!

[n− k]q!
Sn−k,q(x, qky), if k: even,

(−1)
k−1
2

[n]q!

[n− k]q!
Cn−k,q(x, qky), if k: odd.



4 J.Y. Kang

(ii) D (k)
q,yCn,q(x , y) =


(−1)

k
2

[n]q!

[n− k]q!
Cn−k,q(x, qky), if k: even,

(−1)
k+1
2

[n]q!

[n− k]q!
Sn−k,q(x, qky), if k: odd.

The organization of this study is as follows:

Section 2 elaborates on the q-difference equations associated with the

QSG polynomial, drawing upon the theorems established in the preceding

section. We identify multiple q-difference equations that vary both by the

type of polynomial and the variables.

2. Main results

In this Section, we use the Theorems 2.1. and 2.2. to verify the

q-difference equations associated with QSG and QCG polynomials. The

q-difference equations that vary based on the variables are shown to have

QSG and QCG polynomials as solutions.

Theorem 2.1. For k ∈ non-negative integer, we have the following rela-

tions with CGn,q(x, y) and SGn,q(x, y):

(i) D (k)
q,x CGn,q(x , y) =

[n]q !

[n − k ]q !
CGn−k ,q(x , y),

(ii) D (k)
q,x SGn,q(x , y) =

[n]q !

[n − k ]q !
SGn−k ,q(x , y).

Proof. (i) Using the q-derivative in CGn,q(x, y) about x, we get:

D(1)
q,x

∞∑
n=0

CGn,q(x, y)
tn

[n]q!

= t

∞∑
n=0

CGn,q(x, y)
tn

[n]q!

=

∞∑
n=0

[n]qCGn−1,q(x, y)
tn

[n]q!
. (1)
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After comparing the coefficients of tn in Equation (1), we can formu-

late:

D(1)
q,xCGn,q(x, y) = [n]qCGn−1,q(x, y) =

[n]q!

[n− 1]q!
CGn−1,q(x, y).

Via induction, we obtain Theorem 2.1 (i).

(ii) If we apply the proof of (i) of the Theorem 2.1 similarly to SGn,q(x, y),

we can derive (ii) of the theorem; hence, the proof process is omitted.

Theorem 2.2. Let k be a non-negative integer. Then, the following hold:

(i) D (k)
q,yCGn,q(x , y) =


(−1)

k
2

[n]q!

[n− k]q!
CGn−k,q(x, qky), if k: even,

(−1)
k+1
2

[n]q!

[n− k]q!
SGn−k,q(x, qky), if k: odd.

(ii) D (k)
q,y SGn,q(x , y) =


(−1)

k
2

[n]q!

[n− k]q!
SGn−k,q(x, qky), if k: even,

(−1)
k−1
2

[n]q!

[n− k]q!
CGn−k,q(x, qky), if k: odd.

Proof. (i) Applying the q-derivative in CGn,q(x, y) with respect to y, we

obtain

D(1)
q,y

∞∑
n=0

CGn,q(x, y)
tn

[n]q!

=

∞∑
n=0

SGn,q(x, qy)
tn+1

[n]q!

=

∞∑
n=0

[n]qSGn,q(x, qy)
tn

[n]q!
. (2)

Using the coefficient comparison method and induction in (2), we can
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write:

D(1)
q,yCGn,q(x, y) = [n]qSGn−1,q(x, qy)

=
[n]q!

[n− 1]q!
SGn−1,q(x, qy),

D(2)
q,yCGn,q(x, y) = −[n]q[n− 1]qCGn−2,q(x, q2y)

= − [n]q!

[n− 2]q!
CGn−2,q(x, q2y),

...

to derive the desired result.

(ii) If we apply the proof process of (i) of Theorem 2.2 similarly to SGn,q(x, y),

we can derive (ii) of the theorem; hence, the proof process is omitted.

Theorem 2.3. (i) The q-difference equation of the form

Gn,q

[n]q!
D(n)

q,xSn,q(x, y) +
Gn−1,q

[n− 1]q!
D(n−1)

q,x Sn,q(x, y)

+
Gn−2,q

[n− 2]q!
D(n−2)

q,x Sn,q(x, y) + · · ·+ G2,q

[2]q!
D(2)

q,xSn,q(x, y)

+ G1,qD
(1)
q,xSn,q(x, y) + G0,qSn,q(x, y)− SGn,q(x, y) = 0

has SGn,q(x, y) as a solution.

(ii) The polynomial CGn,q(x, y) is a solution of

Gn,q

[n]q!
D(n)

q,xCn,q(x, y) +
Gn−1,q

[n− 1]q!
D(n−1)

q,x Cn,q(x, y)

+
Gn−2,q

[n− 2]q!
D(n−2)

q,x Cn,q(x, y) + · · ·+ G2,q

[2]q!
D(2)

q,xCn,q(x, y)

+ G1,qD
(1)
q,xCn,q(x, y) + G0,qCn,q(x, y)− CGn,q(x, y) = 0.

Proof. (i) Using the generating function of QSG polynomials, we find a

relation for SGn,q(x, y), Gn,q, and Sn,q(x, y) as

∞∑
n=0

SGn,q(x, y)
tn

[n]q!
=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

Gk,qSn−k,q(x, y)

)
tn

[n]q!
. (3)
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Comparing both sides of Equation (3) for tn yields,

SGn,q(x, y) =

n∑
k=0

[
n
k

]
q

Gk,qSn−k,q(x, y). (4)

If we replace Equation (4) with Theorem 1.5.(i), we can write

SGn,q(x, y) =

n∑
k=0

Gk,q

[k]q!
D(k)

q,xSn,q(x, y). (5)

We obtain the desired result by expanding the series in Equation (5).

(ii) Using a procedure similar to Equation (3) for the QCG polynomial, we

can write:

CGn,q(x, y) =

n∑
k=0

[
n
k

]
q

Gk,qCn−k,q(x, y). (6)

Using Theorem 1.5.(ii), Equation (6) becomes Equation (7):

CGn,q(x, y) =

n∑
k=0

Gk,q

[k]q!
D(k)

q,xCn,q(x, y). (7)

From Equation (7), we can derive Theorem 2.3.

Corollary 2.4. For q → 1 in Theorem 2.3, the following holds:

(i)
Gn

n!

dn

dxn
Sn(x, y) +

Gn−1

(n− 1)!

dn−1

dxn−1Sn(x, y)

+
Gn−2

(n− 2)!

dn−2

dxn−2Sn(x, y) + · · ·+ G2

2!

d2

dx2
Sn(x, y)

+ G1
d

dx
Sn(x, y) + G0Sn(x, y)− SGn(x, y) = 0,

(ii)
Gn

n!

dn

dxn
Cn(x, y) +

Gn−1

(n− 1)!

dn−1

dxn−1Cn(x, y)

+
Gn−2

(n− 2)!

dn−2

dxn−2Cn(x, y) + · · ·+ G2

2!

d2

dx2
Cn(x, y)

+ G1
d

dx
Cn(x, y) + G0Cn(x, y)− CGn(x, y) = 0.

Theorem 2.5. Let n be a non-negative integer. Then, the q-difference

equation below, for variable y, has SGn,q(x, y) as the solution.
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(i) If n is a even number, then

(−1)
n
2 Gn,q

[n]q!
D(n)

q,ySn,q(x, q−ny) +
(−1)

n
2 Gn−1,q

[n− 1]q!
D(n−1)

q,y Cn,q(x, q1−ny)

+
(−1)

n−2
2 Gn−2,q

[n− 2]q!
D(n−2)

q,y Sn,q(x, q2−ny) + · · ·

· · · − G2,q

[2]q!
D(2)

q,ySn,q(x, q−2y)

−G1,qD
(1)
q,yCn,q(x, q−1y) + G0,qSn,q(x, y)− SGn,q(x, y) = 0.

(ii) If n is a odd number, then

(−1)
n+1
2 Gn,q

[n]q!
D(n)

q,yCn,q(x, q−ny)

+
(−1)

n−1
2 Gn−1,q

[n− 1]q!
D(n−1)

q,y Sn,q(x, q1−ny)

+
(−1)

n−1
2 Gn−2,q

[n− 2]q!
D(n−2)

q,y Cn,q(x, q2−ny) + · · ·

· · · − G2,q

[2]q!
D(2)

q,ySn,q(x, q−2y)

−G1,qD
(1)
q,yCn,q(x, q−1y) + G0,qSn,q(x, y)

− SGn,q(x, y) = 0.

Proof. In Theorem 1.6.(i), we can formulate

Sn−k,q(x, y) =


(−1)

k
2

[n− k]q!

[n]q!
D

(k)
q,ySn,q(x, q−ky), if k: even,

(−1)
k+1
2

[n− k]q!

[n]q!
D

(k)
q,yCn,q(x, q−ky), if k: odd.

(8)

Applying Equation (8) in Equation (4), we can complete the proof of

Theorem 2.5.

Corollary 2.6. Setting q → 1 in Theorem 2.5, the following holds:
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(i) If n is a even number, then

(−1)
n
2 Gn

n!

dn

dyn
Sn(x, y) +

(−1)
n
2 Gn−1

(n− 1)!

dn−1

dyn−1
Cn(x, y)

+
(−1)

n−2
2 Gn−2

(n− 2)!

dn−2

dyn−2
Sn(x, y) + · · ·

· · · − G2

2!

d2

dy2
Sn(x, y)−G1

d

dy
Cn(x, y) + G0Sn(x, y)

− SGn(x, y) = 0.

(ii) If n is a odd number, then

(−1)
n+1
2 Gn

n!

dn

dyn
Cn(x, y) +

(−1)
n−1
2 Gn−1

(n− 1)!

dn−1

dyn−1
Sn(x, y)

+
(−1)

n−1
2 Gn−2

(n− 2)!

dn−2

dyn−2
Cn(x, y) + · · ·

· · · − G2

2!

d2

dy2
Sn(x, y)−G1

d

dy
Cn(x, y) + G0Sn(x, y)

− SGn(x, y) = 0.

Theorem 2.7. For variable y, CGn,q(x, y) is one of the following solutions

of the q-difference equations:

(i) If n is a even number, then

(−1)
n
2 Gn,q

[n]q!
D(n)

q,yCn,q(x, q−ny) +
(−1)

n−2
2 Gn−1,q

[n− 1]q!
D(n−1)

q,y Sn,q(x, q1−ny)

+
(−1)

n−2
2 Gn−2,q

[n− 2]q!
D(n−2)

q,y Cn,q(x, q2−ny) + · · · − G2,q

[2]q!
D(2)

q,yCn,q(x, q−2y)

+ G1,qD
(1)
q,ySn,q(x, q−1y) + G0,qCn,q(x, y)− CGn,q(x, y) = 0.

(ii) If n is a odd number, then

(−1)
n−1
2 Gn,q

[n]q!
D(n)

q,ySn,q(x, q−ny) +
(−1)

n
2 Gn−1,q

[n− 1]q!
D(n−1)

q,y Cn,q(x, q1−ny)

+
(−1)

n−3
2 Gn−2,q

[n− 2]q!
D(n−2)

q,y Sn,q(x, q2−ny) + · · · − G2,q

[2]q!
D(2)

q,yCn,q(x, q−2y)

+ G1,qD
(1)
q,ySn,q(x, q−1y) + G0,qCn,q(x, y)− CGn,q(x, y) = 0.
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Proof. In Theorem 1.6.(ii), it can be observed that

Cn−k,q(x, y) =


(−1)

k
2

[n− k]q!

[n]q!
D

(k)
q,yCn,q(x, q−ky), if k: even,

(−1)
k−1
2

[n− k]q!

[n]q!
D

(k)
q,ySn,q(x, q−ky), if k: odd.

(9)

Considering Equation (9) in Equation (6), we obtain the result of

Theorem 2.7.

Theorem 2.8. For eq(t) 6= −1, the QSG polynomial is one of the solutions

of the following n-th order difference equation:

1

[n]q!
D(n)

q,xSGn,q(x, y) +
1

[n− 1]q!
D(n−1)

q,x SGn,q(x, y)

+
1

[n− 2]q!
D(n−2)

q,x SGn,q(x, y) + · · ·

+
1

[2]q!
D(2)

q,xSGn,q(x, y) + D(1)
q,xSGn,q(x, y)

+ 2 (SGn,q(x, y)− Sn,q(x, y)) = 0.

Proof. If eq(t) 6= −1 in the generating function of QSG polynomials, the

following derivation is obtained:

2

∞∑
n=0

Sn,q(x, y)
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q
SGn−k,q(x, y) + SGn,q(x, y)

)
tn

[n]q!
. (10)

After comparing the series on both sides in Equation (10), we can

write:

2Sn,q(x, y) =

n∑
k=0

[
n
k

]
q
SGn−k,q(x, y) + SGn,q(x, y). (11)

If we substitute Theorem 2.1.(ii) into the right-hand side of Equation (10),

we can formulate
n∑

k=0

1

[k]q!
D(k)

q,xSGn,q(x, y) + SGn,q(x, y)− 2Sn,q(x, y) = 0. (12)
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By expanding the finite series on the left-hand side of Equation (12),

we obtain the desired result.

Theorem 2.9. The q-difference equation

1

[n]q!
D(n)

q,xCGn,q(x, y) +
1

[n− 1]q!
D(n−1)

q,x CGn,q(x, y)

+
1

[n− 2]q!
D(n−2)

q,x CGn,q(x, y) + · · ·

· · ·+ 1

[2]q!
D(2)

q,xCGn,q(x, y) + D(1)
q,xCGn,q(x, y)

+ 2 (CGn,q(x, y)− Cn,q(x, y)) = 0

has CEn,q(x, y) as the solution.

Proof. Similar to the procedure used for finding Equation (11) in Theorem

2.8, the relationship between CGn,q(x, y) and Cn,q(x, y) is:

2Cn,q(x, y) =

n∑
k=0

[
n
k

]
q
CGn−k,q(x, y) + CGn,q(x, y). (13)

Substituting (ii) of Theorem 2.1. into the right-hand side of Equation

(13), we obtain:

n∑
k=0

1

[k]q!
D(k)

q,xCGn,q(x, y) + CGn,q(x, y)− 2Cn,q(x, y) = 0. (14)

Using Equation (14), we can finish the proof of Theorem 2.9.

Corollary 2.10. For q → 1 in Theorems 2.8 and 2.9, the following holds:
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(i)
1

n!

dn

dxn SGn(x, y) +
1

(n− 1)!

dn−1

dxn−1 SGn(x, y)

+
1

(n− 2)!

dn−2

dxn−2 SGn(x, y) + · · ·

· · ·+ 1

2!

d2

dx2 SGn(x, y) +
d

dx
SGn(x, y)

+ 2 (SGn(x, y)− Sn(x, y)) = 0.

(ii)
1

n!

dn

dxn CGn(x, y) +
1

(n− 1)!

dn−1

dxn−1CGn(x, y)

+
1

(n− 2)!

dn−2

dxn−2CGn(x, y) + · · ·

· · ·+ 1

2!

d2

dx2CGn(x, y) +
d

dx
CGn(x, y)

+ 2 (CGn(x, y)− Cn(x, y)) = 0.

3. Conclusion

We have identified several differential equations whose solutions are

Genocchi polynomials combined with trigonometric functions. It was con-

firmed that differential equations appear in various ways depending on the

variables, and in order to present mathematical modeling in the future, we

need to further study various differential equations.
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